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Abstract

A general continuous system with an arbitrary cubic non-linearity is considered. The non-linearity is
expressed in terms of an arbitrary cubic operator. Three-to-one internal resonance case is considered.
A general approximate solution is presented for the system. Amplitude and phase modulation equations are
derived. Steady state solutions and their stability are discussed in the general sense. The sufficiency
condition for such resonances to occur is derived. Finally the algorithm is applied to a beam resting on a
non-linear elastic foundation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrations of continuous systems are modelled in terms of partial differential equations. Such
systems contain different types of non-linearities. One common non-linearity observed is a cubic
non-linearity. Systems with such non-linearities possess some characteristic features. Three-to-one
internal resonances occur frequently and energy is easily transferred from the excited mode to the
specific mode with 3:1 internal resonance.
A fairly general treatment of the problem is considered by using the formerly developed

operator notation. The linear as well as the non-linear part of the equation of motion are
represented in terms of arbitrary operators. Damping and harmonic external excitation are added
to the system. An approximate solution of the problem is found using the method of multiple
scales, a perturbation technique. A three-to-one internal resonance case is treated in the analysis.
Amplitude and phase modulation equations are derived with coefficients defined in a general sense
in terms of integrals of the cubic non-linearity operator. Steady state solutions of the system as
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well as their stability are examined. The algorithm developed is applied to a beam problem resting
on a non-linear elastic foundation. The fundamental mode is externally excited and due to the 3:1
internal resonance, some of the energy is transferred to the third mode. Force responses and
frequency responses are plotted for these modes of vibrations.
The concept of analyzing non-linear vibrations of continuous systems using a general operator

notation was presented in Ref. [1] for the first time. The aim of that study was to compare the
advantages of direct-perturbation method to the discretization perturbation method in a general
equation having arbitrary quadratic and cubic non-linearities. The finite mode analysis in Ref. [1]
was generalized to an infinite mode analysis in Ref. [2]. The primary resonances were considered
in those analysis. Later, subharmonic, superharmonic and combination type of resonances were
examined using the same model [3]. The general operator notation was also used to compare
different versions of method of multiple scales [4]. Primary resonances of the odd non-linearity
models (cubic, quintic) were also considered in Refs. [5,6]. For a single partial differential
equation, 3:1 internal resonances are considered for the first time in this study using the arbitrary
non-linear operators. For coupled systems, internal resonances were considered assuming an
interaction between the modes of different equations [7–9]. The general operator notation
developed and used by Pakdemirli and co-workers [1–9] has been adopted by others also (see
Refs. [10,11] for example).
The main concern here is to solve a fairly general system with cubic non-linearity having 3:1

internal resonances only. For applying mode truncations, one should first determine all internal
resonances of the specific problem and be sure that the specific natural frequencies selected would
not yield any other resonances than the ones assumed. The beam vibration problem considered in
this work is given as an application of the general algorithm developed and hence not studied in
detail. Only a specific parameter value for which 3:1 internal resonance occurs is treated. For a
more detailed analysis on beam vibrations having cubic non-linearities and internal resonances,
the reader is referred to Refs. [11–15] for example.

2. Equation of motion

The general model considered is as follows

.w þ #m ’w þ LðwÞ þ eCðw;w;w; Þ ¼ #F cosOt; ð1Þ

where w is the response, L is an arbitrary spatial linear operator and Cðw;w;wÞ is an arbitrary
spatial cubic non-linear operator. In continuous systems (string, cable, beam etc.), if stretching
effects are taken into consideration, one common cubic non-linearity is w00

R
D

w02 dx where prime
denotes differentiation with respect to the spatial variable. e is a small parameter. Under the
primary resonance assumption, damping and external excitation amplitude are ordered such that
they counter the effect of non-linearity

#m ¼ em; #F ¼ eF : ð2Þ

The boundary conditions for Eq. (1) are assumed to be linear and homogenous

B1ðwÞ ¼ 0 at x ¼ 0; B2ðwÞ ¼ 0 at x ¼ 1; ð3Þ
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where B1 and B2 are arbitrary spatial linear operators. The cubic non-linearity possesses the
property of being multilinear such that

Cðc1w1 þ c2w2; c3w3 þ c4w4; c5w5 þ c6w6Þ ¼ c1c3c5Cðw1;w3;w5Þ þ c1c3c6Cðw1;w3;w6Þ

þ c1c4c5Cðw1;w4;w5Þ þ c1c4c6Cðw1;w4;w6Þ þ c2c3c5Cðw2;w3;w5Þ þ c2c3c6Cðw2;w3;w6Þ

þ c2c4c5Cðw2;w4;w5Þ þ c2c4c6Cðw2;w4;w6Þ; ð4Þ

fCðw1;w2;w3ÞaCðw1;w3;w2ÞaCðw2;w1;w3Þ

aCðw2;w3;w1ÞaCðw3;w1;w2ÞaCðw3;w2;w1Þ in generalg;

where ci are arbitrary constants or time dependent coefficients.
Although the model is fairly general it has some limitations: viscoelastic effects, non-linear

inertial effects as well as gyroscopic effects are excluded. Non-linear boundary conditions and
parametric excitations are also excluded. The linear operator is assumed to be self-adjoint.

3. Perturbation analysis

Eqs. (1)–(3) will be solved approximately by the method of multiple scales [16,17]. The case of
primary resonances of the external excitation and three-to-one internal resonances of the system
will be considered. The approximate solution is

wðx; t; eÞ ¼ w0ðx;T0;T1Þ þ ew1ðx;T0;T1Þ þ?; ð5Þ

where T0 ¼ t is the usual fast time scale and T1 ¼ et is the slow time scale in the method of
multiple scales. Derivatives are expressed in terms of the new time variables

d=dt ¼ D0 þ eD1 þ? d2=dt2 ¼ D2
0 þ 2eD0D1 þ?; ð6Þ

where Dk ¼ @=@Tk: Substituting all into the original equations and separating at each order of e
yields

Oð1Þ : D2
0w0 þ Lðw0Þ ¼ 0 B1ðw0Þ ¼ 0 at x ¼ 0; B2ðw0Þ ¼ 0 at x ¼ 1; ð7Þ

OðeÞ : D2
0w1 þ Lðw1Þ ¼ �2D0D1w0 � mD0w0 � Cðw0;w0;w0Þ þ F cosOT0

B1ðw1Þ ¼ 0 at x ¼ 0; B2ðw1Þ ¼ 0 at x ¼ 1: ð8Þ

At the first order, the solution can be expressed as follows

w0ðx;T0;T1Þ ¼
XN
m¼1

ðAmðT1ÞeiomT0 þ ccÞYmðxÞ; ð9Þ

where cc stands for complex conjugates of the preceding terms. Inserting this into the Oð1Þ
equation yields the boundary value problems

LðYmÞ � o2
mYm ¼ 0; B1ðYmÞ ¼ 0 at x ¼ 0; B2ðYmÞ ¼ 0 at x ¼ 1; m ¼ 1; 2;y; ð10Þ
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where om are the natural frequencies and Ym are the mode shapes of the problem. Substituting (9)
to the right-hand side of OðeÞ equation and arranging, one has

D2
0w1 þ Lðw1Þ ¼ �

XN
n¼1

ionð2D1An þ mAnÞeionT0Yn

�
XN

m;p;q¼1

fAmApAqe
iðomþopþoqÞT0CðYm;Yp;YqÞ

þ AmAp %Aqe
iðomþop�oqÞT0 ½CðYm;Yp;YqÞ þ CðYm;Yq;YpÞ

þ CðYq;Yp;YmÞ
g þ
F

2
eiOT0þCC ; ð11Þ

B1ðw1Þ ¼ 0 at x ¼ 0; B2ðw1Þ ¼ 0 at x ¼ 1:

It is clear that internal resonances occur when

om þ op þ oqEon; om þ op � oqE7on: ð12Þ

Hence, up to four modes can interact with each other in special circumstances. For a special
choice of parameter, the interactions of the first four modes in a non-linear beam problem have
been investigated in Ref. [14]. In the absence of resonances given in Eq. (12), the solvability
condition would yield

2D1An þ mAn ¼ 0; ð13Þ

or An ¼ Aone
�mT1=2: It is clear that the modes that are not directly excited by an external

excitation, or indirectly excited through an internal resonance would decay in time (see Ref. [17]
p. 462 for a detailed discussion).
In the following part of the analysis, it will be assumed that the system possesses two mode

interactions through a three-to-one internal resonance only. Under this assumption, the mode
that is directly excited (o1) and indirectly excited through internal resonance (o2) will be
considered only. Note that the numbers are assigned to the modes arbitrarily and do not
necessarily represent the first and second modes of vibration. Eq. (11) takes the special form

D2
0w1 þ Lðw1Þ ¼ �io1ð2D1A1 þ mA1Þeio1T0 Y1 � io2ð2D1A2 þ mA2Þeio2T0Y2

� A3
1e

3io1T0 þ 3A2
1
%A1e

io1T0
� �

CðY1;Y1;Y1Þ

� A2 %A
2
1 e

iðo2�2o1ÞT0 þ A2
1A2 e

iðo2þ2o1ÞT0 þ 2A1 %A1A2 e
io2T0

� �
� ½CðY1;Y1;Y2Þ þ CðY1;Y2;Y1Þ þ CðY2;Y1;Y1Þ


� A1A
2
2e

iðo1þ2o2ÞT0 þ A2
2
%A1e

ið2o2�o1ÞT0 þ 2A1A2 %A2e
io1T0

� �
� ½CðY1;Y2;Y2Þ þ CðY2;Y1;Y2Þ þ CðY2;Y2;Y1Þ


� A3
2e

3io2T0 þ 3A2
2
%A2e

io2T0
� �

CðY2;Y2;Y2Þ þ
F

2
eiOT0 þ cc; ð14Þ

B1ðw1Þ ¼ 0 at x ¼ 0; B2ðw1Þ ¼ 0 at x ¼ 1

ARTICLE IN PRESS

M. Pakdemirli, E. .Ozkaya / Journal of Sound and Vibration 268 (2003) 543–553546



The following detuning parameters of Oð1Þ are defined for primary resonances of the external
excitation and 3:1 internal resonances between the natural frequencies

O ¼ o1 þ es; o ¼ 3o1 þ er: ð15Þ

The solution for this order is assumed to be of the form

w1ðx;T0;T1Þ ¼ f1ðx;T1Þeio1T0 þ f2ðx;T1Þeio2T0 þ W ðx;T0;T1Þ þ cc; ð16Þ

where W ðx;T0;T1Þ corresponds to the solution of non-secular terms. Substituting (16) into
Eq. (14), using (15) yields

Lðf1Þ-o
2
1f1 ¼ � io1ð2D1A1 þ mA1ÞY1 � 3A2

1
%A1 CðY1;Y1;Y1Þ

� A2 %A
2
1e

irT1 ½CðY1;Y1;Y2Þ þ CðY1;Y2;Y1Þ þ CðY2;Y1;Y1Þ


� 2A1A2 %A2 ½CðY1;Y2;Y2Þ þ CðY2;Y1;Y2Þ þ CðY2;Y2;Y1Þ
 þ
F

2
eisT1 ; ð17Þ

B1ðf1Þ ¼ 0 at x ¼ 0; B2ðf1Þ ¼ 0 at x ¼ 1;

Lðf2Þ-o
2
2f2 ¼ � io2ð2D1A2 þ mA2ÞY2 � A3

1e
�irT1CðY1;Y1;Y1Þ

� 2A1 %A1A2 ½CðY1;Y1;Y2Þ þ CðY1;Y2;Y1Þ þ CðY2;Y1;Y1Þ


� 3A2
2
%A2CðY2;Y2;Y2Þ; ð18Þ

B1ðf2Þ ¼ 0 at x ¼ 0; B2ðf2Þ ¼ 0 at x ¼ 1

for secular terms. Since the homogeneous part of Eqs. (17) and (18) possesses non-trivial
solutions, the non-homogeneous equations have a solution only if a solvability condition is
satisfied [16]. For the present problem the solvability conditions are

io1ð2D1A1 þ mA1Þ þ a1A2
1
%A1 þ a2A2 %A

2
1e

irT1 þ a3A1A2 %A2 �
1

2
f eisT1 ¼ 0; ð19Þ

io2ð2D1A2 þ mA2Þ þ a4A3
1 e

�irT1 þ a5A1 %A1A2 þ a6A2
2
%A2 ¼ 0; ð20Þ

where

a1 ¼ 3

Z 1

0

Y1 CðY1;Y1;Y1Þ dx; ð21Þ

a2 ¼
Z 1

0

Y1½CðY1;Y1;Y2Þ þ CðY1;Y2;Y1Þ þ CðY2;Y1;Y1Þ
 dx; ð22Þ

a3 ¼ 2

Z 1

0

Y1½CðY1;Y2;Y2Þ þ CðY2;Y1;Y2Þ þ CðY2;Y2;Y1Þ
 dx; ð23Þ

a4 ¼
Z 1

0

Y2CðY1;Y1;Y1Þ dx; ð24Þ

a5 ¼ 2

Z 1

0

Y2 ½CðY1;Y1;Y2Þ þ CðY1;Y2;Y1Þ þ CðY2;Y1;Y1Þ
 dx; ð25Þ
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a6 ¼ 3

Z 1

0

Y2 ½CðY2;Y2;Y2Þ dx; ð26Þ

f ¼
Z 1

0

FY1 dx: ð27Þ

Note that the constants of the complex amplitude modulation equations are defined in terms of
arbitrary cubic operators in a general form. For the specific cubic operator and mode shapes, the
integrals can be evaluated either analytically or for more involved problems numerically. For the
mode shapes,

R 1

0 Y 2
1 dx ¼ 1;

R 1

0 Y 2
2 dx ¼ 1 normalization conditions are applied.

4. Approximate solutions and their stability

In this section, the real amplitude and phase modulation equations will be developed from the
complex amplitude modulation equations. The approximate solution will be generated. The
steady state solutions of amplitude–phase modulation equations and their stability will be
discussed.
Substituting the polar forms

A1 ¼ 1
2

a1ðT1Þeib1ðT1Þ; A2 ¼ 1
2

a2ðT1Þeib2ðT1Þ; ð28Þ

into Eqs. (19) and (20), separating real and imaginary parts, one has

o1a
0
1 þ

m
2
o1a1 þ

a2
8

a2
1a2 sin l�

1

2
f sin g ¼ 0;

� a1o1b
0
1 þ

a1
8

a3
1 þ

a2
8

a2
1a2 cos lþ

a3
8

a1a
2
2 �

1

2
f cos g ¼ 0;

o2a
0
2 þ

m
2
o2a2 �

a4
8

a3
1 sin l ¼ 0;

� a2o2b
0
2 þ

a4
8

a3
1 cos lþ

a5
8

a21a2 þ
a6
8

a32 ¼ 0; ð29Þ

where

g ¼ sT1 � b1; l ¼ b2 � 3b1 þ rT1: ð30Þ

Steady state solutions correspond to a01 ¼ a02 ¼ g0 ¼ l0 ¼ 0 or substituting a01 ¼ a0
2 ¼ 0;

b01 ¼ s;b02 ¼ 3s� r; one has

m
2
o1a1 þ

a2
8

a21a2 sin l�
1

2
f sin g ¼ 0;

� a1o1sþ
a1
8

a31 þ
a2
8

a2
1a2 cos lþ

a3
8

a1a
2
2 �

1

2
f cos g ¼ 0;

m
2
o2a2 �

a4
8

a31 sin l ¼ 0;

� a2o2ð3s� rÞ þ
a4
8

a3
1 cos lþ

a5
8

a21a2 þ
a6
8

a32 ¼ 0: ð31Þ
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From (31)3 above, for 3:1 internal resonance to occur, in addition to the condition of one
natural frequency being approximately equal to the three times the other frequency (necessary
condition), the following sufficiency condition should also hold

a4a0 or

Z 1

0

Y2 CðY1;Y1;Y1Þ dxa0: ð32Þ

This general condition has been derived for the first time by the authors. It is one of the proofs
of advantages gained by attacking the general cubic non-linearity problem, rather than working
on special cases.
To determine the stability of the system, Eqs. (29) are rewritten by eliminating b01 and b02

a01 ¼ �
m
2

a1 �
a2
8o1

a21a2 sin lþ
f

2o1
sin g ¼ F1ða1; a2; g; lÞ;

a02 ¼ �
m
2

a2 þ
a4
8o2

a31 sin l ¼ F2ða1; a2; g; lÞ;

g0 ¼ s�
a1
8o1

a21 �
a2
8o1

a1a2 cos l�
a3
8o1

a22 þ
f

2a1o1
cos g ¼ F3ða1; a2; g; lÞ;

l0 ¼ rþ
a4a3

1

8a2o2
�
3a2a1a2
8o1

� �
cos lþ

a5
8o2

�
3a1
8o1

� �
a21

þ
a6
8o2

�
3a3
8o1

� �
a2
2 þ

3f

2a1o1
cos g ¼ F4ða1; a2; g; lÞ: ð33Þ

The Jacobian matrix is constructed to determine the stability of fixed points

@F1

@a1

@F1

@a2

@F1

@g
@F1

@l
@F2

@a1

@F2

@a2

@F2

@g
@F2

@l
@F3

@a1

@F3

@a2

@F3

@g
@F3

@l
@F4

@a1

@F4

@a2

@F4

@g
@F4

@l

2
666666666664

3
777777777775 a1 ¼ a10

a2 ¼ a20

g ¼ g0
l ¼ l0

: ð34Þ

By evaluating the eigenvalues of the Jacobian matrix, stability is determined. Eigenvalues
should not have positive real parts to maintain stability.
The approximate solution for the problem is

wðx; t; eÞ ¼ a1 cos ðOt � gÞY1ðxÞ þ a2 cos ð3Ot þ l� 3gÞY2ðxÞ þ OðeÞ; ð35Þ

where a1; a2; g and l are governed by Eqs. (33).
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5. Application to a beam problem

The algorithm will be applied to a simply supported Euler–Bernoulli beam resting on a non-
linear elastic foundation (Fig. 1). Only a special case of 3:1 internal resonance will be considered
here. For further reading on beam vibrations with cubic non-linearities and internal resonances,
see Refs. [11–15]

.w þ em ’w þ wiv þ k1w þ ek2w
3 ¼ eF cosOt;

wð0; tÞ ¼ w00ð0; tÞ ¼ wð1; tÞ ¼ w00ð1; tÞ ¼ 0: ð36Þ

The operators are

LðwÞ ¼ wiv þ k1w Cðw;w;wÞ ¼ k2w
3: ð37Þ

The eigenvalue problems in Eq. (10) yield

Y iv
n � b4nYn ¼ 0 Ynð0Þ ¼ Y 00

n ð0Þ ¼ Ynð1Þ ¼ Y 00
n ð1Þ ¼ 0; ð38Þ

where b4n ¼ o2
n � k1;on being the natural frequency. Solving the problem

YnðxÞ ¼
ffiffiffi
2

p
sin npx; on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4p4 þ k1

p
; n ¼ 1; 2; 3; :::: : ð39Þ

By exciting the fundamental mode, the second natural frequency can not be excited through a
3:1 internal resonance since a4 ¼ 0 (see Eq. 32). Hence an interaction of the fundamental mode
with the third mode is considered. For k1 ¼ 870; o1 ¼ 31:1 and o2 ¼ 93:6: The mode shapes are
Y1 ¼

ffiffiffi
2

p
sin px and Y2 ¼

ffiffiffi
2

p
sin 3px (subscript 1 refers to the externally excited mode and 2 to

the other mode excited internally). Note that for the specific choice of k1 ¼ 693p4=152 or in a close
neighborhood, the first four natural frequencies were interacted through an internal resonance
[14]. For the special choice, however, since the first and third modes are finely tuned, only a 3:1
internal resonance is possible.
The next step is to calculate the coefficients of amplitude–phase modulation equations by

evaluating the integrals for the specific mode shapes and operators (i.e., Eqs. (21)–(26))

a1 ¼
9

2
k2; a2 ¼ �

3

2
k2; a3 ¼ 6k2; a4 ¼ �

k2

2
; a5 ¼ 6k2; a6 ¼

9

2
k2: ð40Þ

Fixed points are the roots of Eq. (31) and their stability are governed by Eqs. (33) and (34). The
roots are found by the solve subroutine of Matlab numerically.
In Fig. 2, the force response graph is given for parameter values o1 ¼ 31:1; o2 ¼ 93:6; r ¼ 0:3;

m ¼ 0:01; k2 ¼ 1 and s ¼ 0:04: The third mode can be activated for fX0:5: Solid lines correspond
to stable solutions and dashed lines correspond to unstable solutions. The frequency response
graphs of each mode are given in Figs. 3a and b for f ¼ 1; s varying and all other parameters

ARTICLE IN PRESS

Fig. 1. An Euler–Bernoulli beam resting on a non-linear elastic foundation.

M. Pakdemirli, E. .Ozkaya / Journal of Sound and Vibration 268 (2003) 543–553550



ARTICLE IN PRESS

Fig. 2. Force response curves for the externally excited (a1) and internally excited (a2) modes (solid: stable; dashed:

unstable solutions).

Fig. 3. (a) Frequency response curve for the externally excited mode. (b) Frequency response curve for the mode

excited with a 3:1 internal resonance.
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remaining the same. The dynamics of the problem is complicated with stable and unstable
solutions co-existing for a fixed external frequency.
The approximate solution for the problem can be written from Eqs. (35) and (39)

wðx; t; eÞ ¼ a1 cos ðOt � gÞ
ffiffiffi
2

p
sin px þ a2 cos ð3Ot þ l� 3gÞ

ffiffiffi
2

p
sin 3px þ OðeÞ: ð41Þ

A critical question may be the validity of this solution on large time scales. Boertjens and
Horssen [18] investigated a quadratic non-linearity beam problem and showed that the two-term
approximations are of order e approximations of the exact solution on time scales of order 1=e:
The system they have considered was a conservative system without damping and their result was
indeed critical for conservative systems. For systems with damping, the transient solution would
die out and the present two-term expansion would produce results compatible with experiments.

6. Concluding remarks

A cubic non-linearity system is expressed in a general form. Three-to-one internal resonances
are investigated for the system. Approximate solutions are derived. The amplitude and phase
modulations of the solution are derived. The coefficients of modulation equations are expressed in
general integral forms of the mode shapes and operators. Steady state solutions and their stability
are discussed. The sufficiency condition for such resonances to appear is derived. Finally the
algorithm developed is applied to a beam vibration problem resting on a non-linear elastic
foundation.
Within the limitation of the model discussed at the end of Section 2, the algorithm developed

can be applied to a wide range of problems having cubic non-linearities with 3:1 internal
resonances.
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